
J .  Fluid Mech. (1974), vol. 62, part 3, pp.  539-551 

Printed k z  areat Britain 
539 

Prediction of laminar flow and heat transfer 
in helically coiled pipes 

By S .  V. PATANKAR, V. S. PRATAP 
A N D  D. B. SPALDING 

Department of Mechanical Engineering, Imperial College, London 

(Received 27 May 1973) 

A calculation procedure for three-dimensional parabolic flows is applied to 
predict the velocity and temperature fields in helically coiled pipes. The curvature 
produces a secondary flow and causes departures from the symmetric velocity 
profile of Poiseuille flow. Predictions are presented of flow and heat transfer in 
the developing and fully developed regions. Comparisons of the developing and 
fully developed velocity profiles with experimental data exhibit good agreement. 
The development of the wall temperature for the case of axially uniform heat 
flux with an isothermal periphery has been compared with experimental data and 
the agreement is good. Predictions for fully developed temperature profiles and 
heat-transfer coefficients also exhibit good agreement with experimental data. 
Effects of the Dean number on the friction factor and heat transfer are presented. 

1.1. 1. Introduction The problem considered 

Flow and heat transfer in curved pipes are of importance in the heating and cool- 
ing coils used in heat exchangers and refrigeration equipment. The flow in curved 
pipes is characterized by a secondary flow in a cross-sectional plane normal to 
the main flow (figure 1),  the nature of which depends upon the Dean number 
K = Re (a/R)* (a being the radius of the pipe, R its radius of curvature and Re 
the Reynolds number). The centrifugal forces act a t  right angles to the main 
direction of flow, so that the profile of axial velocity is distorted from the sym- 
metric profile of Poiseuille flow; the point a t  which the velocity has its peak is 
shifted to the outside. 

In the present study, the parabolic differential equations governing three- 
dimensional flow are solved by the procedure of Patankar & Spalding (1972). 
The present study has been limited to laminar uniform-property flows; exten- 
sions to turbulent and non-Newtonian flows are in progress. 

1.2. Past work 

The literature on laminar flow and heat transfer in curved pipes is quite extensive; 
however, most of the investigations have been restricted to the ‘fully developed’ 
situation in which the pattern of fluid flow and heat transfer remains unchanged 
from one section to the next. Dean (1927) was one of the first researchers in this 
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FIGURE 1. Secondary flow pattern. 

area; using a perturbation technique, he analysed the secondary flow field as a 
deviation from Poiseuille flow. Subsequent publications have been summarized 
by Ito (1970). Mori & Nakayama (1965) solved the governing equations by in- 
tegral methods, subdividing the flow pattern into a core and a boundary-layer 
region. A similar analysis was performed by Ito (1970). McConalogue & Srivas- 
tava (1968) used a Fourier-series method to solve the governing differential 
equations for fully developed flow in a curved tube for Dean numbers ranging 
between 16.6 and 100, Akiyama & Cheng (1971) predicted the fully developed 
flow and heat-transfer characteristics by solving the finite-difference equations 
for the vorticity, stream function, axial velocity and temperature. 

There have been very few investigations in the developing region of flow and 
temperature fields. Austin (197 1) studied the hydrodynamic entrance region, 
experimentally. The thermal entry region was studied theoretically by Dravid 
( 1 97 I) ,  who assumed the fully developed velocity profiles of Mori & Nakayama 
(1965) and employed a finite-difference method to solve the energy equation. 
These authors also presented experimental data on wall temperatures and 
Nusselt numbers in the developing and fully developed regions. 

1.3. Present work 
The present study concerns the developing ‘entry’ flow, both hydrodynamic and 
thermal, in helically coiled pipes; the finite-difference method of Patankar & 
Spalding (1972) is used to compute the flow and temperature distributions, 
section-by-section along the pipe; the fully developed flow appears as the solu- 
tion for the sections which are remote from the entrance. Comparisons are made 
with the experimental velocity profiles and friction factors of Ito (1970), Mori 
& Nakayama (1965) and Austin (1971). The fully developed and developing 
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FIGURE 2. The geometry considered. 

temperature fields and heat-transfer rates are compared with the experimental 
data of Mori & Nakayama (1965) and Dravid (1971). Only large curvature ratios 
(R /a  2 15) have been considered in this investigation. 

1.4. Outline of the paper 

The calculation procedure, which is a finite-difference marching technique, is 
described briefly in $2.  The results of the computations and comparisons with 
experimental data are presented in 93. Section 4 discusses possible further 
developments. 

2. Mathematical statement of the problem 
2.1. The geometry and governing differential equations 

The physical situation, illustrated in figure 2, may be conveniently described in 
cylindrical polar ( r ,  6, z )  co-ordinates. The fluid properties, namely viscosity, 
density and specific heat, have been assumed to be uniform, although their 
variation could have been incorporated easily. The flow is treated as ‘parabolic ’, 
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i.e. as being of the ‘ boundary-layer ’ variety; this means that heat conduction 
and viscous action in the z direction are neglected. 

The governing partial differential equations are the continuity equation 

i a  i av ,  av, 
--(rvT)+--+- = 0, 
r ar r 88 a x  

the r momentum equation 

the 8 momentum equation 

r l a  ax 1 p - - (rvovr) + - - (vsvs) + - - (rv,v,) 
i a  i a  

[ r  ar r ae 

the x momentum equation 

i a2v, 
r l a  a2 1 2 [: :r ( 2) r2 3621 (4) 

l a  i a  
[r ar r a0 

p --(rv,~,)+--(v,v,)+--(r~,v~) = --+p -- r- +-- 
and the energy equation 

,u l a  +--(rv,T) = - -- r- +- - p -- (rvTT)+-- 1 Pr [r  ar ( t;) F2 (Z’)] 3 
(5) 

i a ( v , q  1 a [F i r  r a6 r az 

where (vr, vo, v,) is the fluid velocity and p and ,u its density and viscosity. Pr is 
the Prandtl number. 

A feature of these equations which deserves especial note is that a single 
pressure I ,  is supposed to prevail a t  each cross-section in the x momentum 
equation (4) ; but in the r and 0 momentum equations (2) and (3),  the pressure p 
is allowed to vary over the cross-section. This inconsistency, which is a necessary 
condition for the differential equations to be soluble by a marching technique, 
has been discussed in Patankar & Spalding (1972) and Caretto, Curr & Spalding 
(1971); i t  does not lead to significant error when the Reynolds number is high. 

2.2. Solution procedure 

The above equations, with appropriate boundary conditions, are solved by a 
finite-difference procedure which we need describe here only in outline, a com- 
plete account being given in Patankar & Spalding (1972). The main steps 
necessary to deduce the flow properties a.t one pipe cross-section from those a t  
a section immediately upstream are as follows. 

(i) The pressure distribution (both 3 and p )  at the downstream section is 
guessed. 

(ii) The r ,  6 and x momentum equations are then solved to get a first approxi- 
mation to the velocity profile a t  the downstream section. 
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FIGURE 3. Effect of grid size at a Dean number of 800 and radius ratio R/a of 16.4. The 
velocity profiles are along the plane AA;  is the cross-sectional average of V,. Grids: 
-0-, 18 x 12, non-uniform; -, 16 x 12, non-uniform; ---, 12 x 12, non-uniform. 

(iii) The mean pressure I j :  and the axial velocity are thereupon corrected so 
as to ensure that the mass flow rate through the downstream section is the same 
as that through the upstream section. 

(iv) Since the cross-stream velocities do not satisfy the continuity equation 
locally, an equation is solved for corrections to the pressure field ( p )  and the cross- 
stream velocities are corrected accordingly. 

(v) The energy equation is solved so as to provide the temperature dis- 
tribution a t  the downstream station. 

(vi) A new downstream station is chosen and steps (i)-(v) are repeated. 

3. Results and discussions 
3.1, Computational details 

In  the computations from which the following results were derived, the finite- 
difference grid possessed 15 intervals in the r direction and 11 intervals in the 8 
direction; the grid covered only a semi-circular sector because the flow must be 
symmetric about a diameter passing through the axis of the helix. The grid 
spacing was uniform in the 0 direction; in the r direction the grid lines were more 
closely spaced near the wall than near the centre. That the 15 x 11 grid gave 
sufficient accuracy was confirmed by repeating the calculations with finer and 
coarser grids; the results of these tests are shown in figure 3. The forward-step 
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FIGURE 4. Comparison of axial velocity profiles with experimental data. (a )  K = 372.0, 
R / u  = 100; 0 ,  Adler (1934). ( b )  K = 442.7, R/a  = 40; 0, Mori & Nakayama (1965). 
(c) K = 632.4, Rla = 40. 0, A,  Mori & Nakayama (1965). 

dependency was tested by repeating the comput,ations with smaller and larger 
step sizes; a step size was then chosen which was small enough not to affect 
the solution. The developing-flow solutions were obtained by the marching pro- 
cedure with small forward steps. However, when only the fully developed flow 
was to be computed, very large forward steps were taken and the velocities were 
under-relaxed at  each step. The computer time needed to perform a developing- 
flow computation was of the order of 240 s on a CDC 6600 computer for 800 
steps; the fully developed computation starting with a uniform velocity profile 
needed about 60 s for 140 steps. 

3.2. TheJEowJield 

The computations of velocity profiles and friction factors in fully developed 
flow have been compared with the experimental data of various authors. Figure 
4 compares the present predictions of the fully developed velocity profiles 
with those of Mori & Nakayama (1965) and Adler (1934). Figure 5 compares the 
corresponding friction factors with data of various authors (from Ito 1970). 
The agreement with experiment is very good. Figures 6-8 display the develop- 
ment of the velocity field along the z direction and comparisonswith experimental 
data of Austin (1971). The agreement is quite good, considering the fact that the 
inlet velocity profiles in the experiment were not exactly parabolic. 

The computed axial-velocity profiles a t  various angular planes are shown in 
figure 9, and figure 10 displays the effect of Dean number on the axial-velocity 
profiles. It can be seen that the velocity peak is shifted towards the outside as the 
Dean number is increased. 

3.3. Heat transfer 

The heat-transfer rates in helical coils are larger than the straight-tube value and 
have a wide peripheral variation. The present predictions of fully developed 
temperature profiles under the condition of axially uniform heat flux have been 
compared with experimental data of Mori & Nakayama (1 965). Figure 11 shows 
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FIGURE 5. Comparison of fully developed friction factors f with experimental data. f, 
and fs are the curved-tube and straight-tube values respectively. - , predictions; 0, 

I t o  (1970). 
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FIGURE 6. Axial-velocity field represented along various planes 
at K = 442.7, Rla = 40. 

good agreement in the outside half of the plane but there are significant differences 
in the inside region. Further comparisons have been made with the theoretical 
solution of Akiyama & Cheng (1971); from figure 12 i t  can be seen that there is 
good agreement in the range of Dean numbers which they considered. It is also 
observed that the inside heat-transfer coefficient approaches about half the 
straight-tube value a t  a Dean number of 300 and then increases slowly to 
the straight-tube value a t  a Dean number of 1200. 

In  contrast to the theoretical predictions, the experiments of Mori & Naka- 
yama show much steeper temperature gradients on the inside. In  view of the 
comparison in figure 12, it  appears that their temperature profile may be in 
error, either owing to inaccuracy in measurement or imperfection in setting up the 
stated temperature boundary conditions. 

35 F L M  6 2  
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FIGURE 7. Effect of Dean number on axial-velocity profiles in ( a )  the plane A A  and ( b )  the 
plane BB (see figure 2). (i) Straight tube. (ii) K = 60.0. (iii) K = 500.0. (iv) X = 1200.0. 

- 1.0 

-0.5 

p o  

0.5 

1 .o 
- 1.0 

- 0.5 

9 0  

0.5 

I .o 
Vzl rz 

FIGURE 8. Development of axial velocity a t  K = 198.0 and R/a = 29.1 in 
(a) the plane BE a.nd ( b )  the plane AA. -, predictions; 0 ,  A, Austin (1971). 

Despite the discrepancy in temperature profile, the mean Nusselt numbers 
seem to be in good agreement as shown in figure 13(a). Figure 1 3 ( b )  shows a 
comparison of our predictions for the fully developed Nusselt number with 
experimental data of Dravid (1971). I n  his experiments, the Prandtl number 
varied from 6 to 4 over the developing region. Since the comparison in figure 
13(b)  is for the fully developed condition, our computations were based on a 
uniform Prandtl number of 4, which was appropriate to the outlet condition. The 
effect of Dean number on the temperature profiles is shown in figure 14. 
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FIGURE 9. Development of axial velocity at  K = 280.0 and R/a = 29.1 in 
(a )  the plane BB and ( b )  the plane AA.  Notation as in figure 8. 
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FIGURE 10. Development of axial velocity at  K = 372.0 and R/a = 29.1 in 
( a )  the plane BB and ( b )  the plane AA. Notation as in figure 8. 
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FIGURE 11. Temperature profiles along the planes A A  and BB; K = 632.4, R/a = 40.0 
and Pr = 0.71. -, predictions; 0 ,  A, Mori & Nakayama (1965). T, is the wall tempera- 
ture. 
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FIGURE 12. Local variation of Nusselt number Nu with Dean number. Nu, and Nu, are 
curved-tube and straight-tube values respectively ; the curve marked O,, gives values 
averaged over the periphery. Pr = 0.71. - , present results; - - - , Akiyama & Cheng 
(1971). 
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FIGURE 13. Variation of Nusselt number with Dean number. (a )  Pr = 0.71. -, pre- 
dictions; 0,  Dravid (1971). The subscript m indicates the mean value. ( b )  Pr = 4.0. 
-, predictions; 0 ,  Mori & Nakayama (1965). 
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FIGURE 14. Effect of Dean number on the temperature profile along the plane A A  ; 
Pr = 0.71. T, is the bulk temperature. 

3.4. The thermal entrance region 

The development of the temperature field was studied under the condition of 
axially constant heat flux with an isothermal periphery; the results are shown 
in figure 15. It was observed that the wall temperature exhibits cyclic oscilla- 
tions. which are damped out as the fully developed thermal field is established. 
That the oscillations are not due to any numerical instability was confirmed by 
repeating the computations with different forward-step sizes. It was ascertained 
that the oscillations are a consequence of the secondary flow as had also been 
reported earlier by Dravid (1971) and Seban & McLaughin (1963). 

The present predictions are compared with experimental results of Dravid 
(1971); the agreement is satisfactory although the predictions show a quicker 
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FIGURE 15. Development of wall temperature and Nusselt number for the case of axially 
constant heat flux at K = 225.0 and R/u = 20.0. (i) Bulk temperature. (ii) Wall tem- 
perature. (iii) Nusselt number. The non-dimensional temperature is T/[XZ’Ji3(z/a)]. --, 
predictions; Dravid (1971). 

h 
A r -  1 

Dean number Computed Experimental 

225.0 51.0 52.5 
447.0 71-0 75.0 
800.0 73.0 100.0 

TABLE 1 

damping of the oscillations. A dimensionless wavelength h of the first oscilla- 
tion, defined as the distance z/a between the point a t  whicha line parallel to 
the bulk temperature line is tangential to the first maximum and first mini- 
mum in the wall-temperature curve, is compared with experimental results 
for various Prandtl and Dean numbers. The computations confirm the 
experimental results of Dravid that the Prandtl number, in the range studied 
(0-7-15-0), has little effect on the wavelength A. Table 1 shows the wavelength 
h for a few Dean numbers. 

4. Conclusions 
The method of Patankar & Spalding (1972) has been successfully applied to 

developing and to  fully developed flow in coiled pipes. No numerical difficulties 
have been encountered and the computer times required are quite modest. 
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The predictions show very satisfactory agreement with available experimental 
data and theoretical solutions. 

Further tasks are the following. 
(i) Extension of the method to flows with small curvature ratio (Rla) .  
(ii) Incorporation of a turbulence model to predict the turbulent flow in 

(iii) Application of the method to non-Newtonian flows which occur in 

Work on these tasks is currently in progress. 

curved pipes. 

physiological and other systems. 
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